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Power of Linkage versus Association Analysis of Quantitative Traits,
by Use of Variance-Components Models, for Sibship Data
P. C. Sham,1 S. S. Cherny,1,2 S. Purcell,1 and J. K. Hewitt2

1 Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London; and 2Institute for Behavioral Genetics,
University of Colorado, Boulder

Optimal design of quantitative-trait loci (QTL) mapping studies requires a precise understanding of the power of
QTL linkage versus QTL association analysis, under a range of different conditions. In this article, we investigate
the power of QTL linkage and association analyses for simple random sibship samples, under the variance-com-
ponents model proposed by Fulker et al. After a brief description of an extension of this variance-components
model, we show that the powers of both linkage and association analyses are crucially dependent on the proportion
of phenotypic variance attributable to the QTL. The main difference between the two tests is that, whereas the
power of association is directly related to the QTL heritability, the power of linkage is related more closely to the
square of the QTL heritability. We also describe both how the power of linkage is attenuated by incomplete linkage
and incomplete marker information and how the power of association is attenuated by incomplete linkage
disequilibrium.

Introduction

The incorporation of genetic-marker information into
variance-components models represents an integration
between molecular and biometric genetics that promises
to isolate quantitative-trait loci (QTL) and to elucidate
their phenotypic actions (Schork 1993; Amos 1994;
Kruglyak and Lander 1995; Eaves et al. 1996; Fulker
and Cherny 1996; Almasy and Blangero 1998). We have
recently proposed a method of combined QTL linkage
and association analysis through the simultaneous mod-
eling of the means and covariances of sibling pairs
(Fulker et al. 1999). The linkage test is based on differ-
ences in covariances according to the identity-by-descent
(IBD) status, at the candidate locus, of sibling pairs. The
association test is based on differences in means, given
the genotypes at the candidate locus. The model for the
means is partitioned into between- and within-pairs (i.e.,
inter- and intrasibship) components; an association test
based on the within-pairs component has the same de-
sirable property as the transmission/disequilibrium test
(Spielman et al. 1993)—of being robust to population
stratification.

Although the proposed method can separately or si-
multaneously model both linkage and association, the
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properties of these two phenomena are very different.
Linkage extends over substantial genetic distances and
is therefore suited for long-range mapping. Association,
on the other hand, relies on either the presence of link-
age disequilibrium between the marker and trait loci or
on the marker locus being the trait locus itself and is
therefore likely to be useful only for short-range map-
ping. The shorter range of association is, however, com-
pensated by its potentially far greater power, for the
detection of alleles with minor or modest phenotypic
effects (Risch and Merikangas 1996). These comple-
mentary properties of linkage and association are im-
portant in gene-mapping studies of complex disorders
and quantitative traits, in which the effect sizes of in-
dividual contributory loci are unknown but likely to be
modest.

Fulker et al. (1999) performed some simulation stud-
ies of the power of the linkage and association tests,
under a range of conditions. The pattern of results sug-
gested the existence of simple relationships between the
average values of the test statistics and genetic param-
eters such as the proportion of variance accounted for
by the QTL and the degree of linkage disequilibrium
between the QTL and the candidate locus. In the present
article, we proceed to derive analytical formulas for the
noncentrality parameters for the linkage and association
tests. In addition to allowing power calculations to be
performed without the need for simulations, these for-
mulas also provide useful insight into the various factors
that determine the power of linkage and association
analysis.
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QTL Linkage and Association Analysis under a
Variance-Components Model

Fulker et al. (1999) presented a variance-components
model for sib pairs, incorporating additive effects at the
QTL. Here, we extend this model to larger sibships and
to incorporate dominance. The candidate locus is as-
sumed to be diallelic with genotypes A1A1, A1A2, and
A2A2. For an individual, the variable A encodes the ad-
ditive effect of the candidate locus genotype and is as-
signed the values 1, 0, and 21 for the genotypes A1A1,
A1A2, and A2A2, respectively. Likewise, the variable D
represents the dominance deviation of the candidate lo-
cus genotype and is assigned the values 0, 1 and 0 for
the genotypes A1A1, A1A2, and A2A2, respectively. For
every sibling pair, the proportion of alleles IBD (p) and
the probability of complete IBD sharing (z) at the can-
didate locus are estimated from marker-genotype data,
by means of one of several available methods (Curtis
and Sham 1994; Fulker et al. 1995; Kruglyak and
Lander 1995; Almasy and Blangero 1998).

The variance-components model for a sibship of size
s specifies that, conditional on the vectors of additive
effects and dominance deviations of the candidate-locus
genotypes and ,′ ′A = (A ,A ,...,A ) D = (D ,D ,...,D)1 2 s 1 2 s

and the IBD sharing matrices and ,ˆˆ[P] = p [Z] = zij ij ij ij

the vector of quantitative-trait values of′y = (y ,y ,...,y )1 2 s

the siblings has a multivariate normal distribution, with
mean vector and covariance matrix

[ ]m = m 1 aA 1 dDi ii

and

2 2 2 2j 1 j 1 j 1 j if i = jN S A D[ ]S = ,2 2 2ij { ˆˆj 1 p j 1 z j if i ( jS ij A ij D

where m is a constant, a and d represent, respectively,
the magnitudes of the additive effects and dominance
deviations at the candidate locus, and represent,2 2j jA D

respectively, the additive and dominance components of
QTL variance that are not already accounted for by the
effects of the genotypes at the candidate locus (i.e., A
and D), and and represent, respectively, the re-2 2j jS N

sidual shared and nonshared variances.
This model makes no allowance for any correlation

or interaction between the candidate gene and the pol-
ygenic background or the environment. Components of
variance not involving the candidate locus are parti-
tioned into and . Under random mating, half the2 2j jS N

additive genetic variance will load on , the remaining2jS

half on ; one-quarter of dominance and additive-ad-2jN

ditive epistatic variance will load on , the remaining2jS

three-quarters on ; and other components of higher-2jN

order epistatic variance will likewise load differentially
on and in accordance with biometrical genetic2 2j jS N

theory (Kempthorne 1957; Sham 1998). Common sib-
ling environment loads entirely on , whereas non-2jS

shared environment loads entirely on .2jN

As mentioned, Fulker et al. (1999) suggested parti-
tioning the candidate-locus effects A and D into be-
tween-sibship and within-sibship components:

s sO A O Aj j
j=1 j=1( ) ( )( ) ( ) ( )A = 1 A 2 = A 1 Ai b wi i is s

and

s sO D O Dj j
j=1 j=1( ) ( )( ) ( ) ( )D = 1 D 2 = D 1 D .i b wi i is s

For each sibling, the between-sibships component is
the mean effect of the sibship, whereas the within-sib-
ship component is the deviation of the sibling’s effect
from the sibship mean, for both additive effects and
dominance. This partition modifies the mean vector to

m = m 1 a A 1 a A 1 d D 1 d Db b w w b b w w ,

where ab and db are the magnitudes of the between-
sibships components, and aw and dw are the magnitudes
of the within-sibship components, of the additive effects
and dominance deviations at the candidate locus, re-
spectively. This modified model is identical to the orig-
inal model when and which isa = a = a d = d = d,b w b w

the case when there is no population stratification or
other causes of “spurious associations.”

The log-likelihood function for a sample of N sib-
ships, y1, y2,),yN, is then

N1 ′ 21F F ( )ln L = 2 ln S 1 (y 2 m ) S y 2 m .[ ]O i i i i i i2 i=1

Various likelihood-ratio statistics of the form
can be constructed, where ln L0 is the2(ln L 2 ln L )1 0

maximum log-likelihood under a null hypothesis, ob-
tained by imposing restrictions on certain parameters
of interest, and ln L1 is the maximum log-likelihood
under an alternative hypothesis, where these restrictions
are removed. Here, we consider four tests, which share
the same null hypothesis, which is obtained by restrict-
ing all the parameters , , aw, dw, ab, and db to 0. A2 2j jA D

test of linkage is obtained by setting free and ; a2 2j jA D

test of overall association is obtained by setting free
aw, dw, ab, and db; a test of between-sibships association
is obtained by freeing only ab and db; and a test of
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within-sibship association is obtained by freeing only
aw and dw.

It is also possible to extend the mean vector to model
candidate loci with multiple alleles. Two parameters,
one for between-sibships and the other for within-sib-
ship association components, can be specified for each
allele, to model additive effects (except for the last allele,
where the parameters are fixed at 0 to avoid linear de-
pendencies). Similarly, two parameters can be specified
for each heterozygous genotype—one for the between-
sibships and the other for the within-sibship compo-
nents of dominance deviations.

Power and Noncentrality Parameter of the
Likelihood-Ratio Test

The four tests defined above are generalized likelihood-
ratio tests that, in large samples and under standard
conditions, have a central x2 distribution when the null
hypothesis is true and that have a noncentral x2 when
an alternative hypothesis is true (Kendall and Stuart
1979). Although we wish to investigate the power of
these tests, power itself is not a convenient quantity, since
it is dependent on the arbitrary choice of critical p value
and is not linearly related to sample size. However, given
a chosen critical p value, the power of a x2 test can be
determined approximately from the noncentrality pa-
rameter (l) and the df of the non-central x2 distribution.
The noncentrality parameter is determined by the “true
model” (incorporating the magnitudes of the hypothe-
sized effects) and is directly proportional to sample size.
Given the noncentrality parameter (and the df) of a test,
one can refer to the appropriate noncentral x2-distri-
bution function to obtain power estimates for any sam-
ple size at any chosen critical p value. Although these
estimates of power are not exact (e.g., when the sample
is small or if conditions are nonstandard), they will usu-
ally be sufficiently accurate for practical purposes. For
these reasons, it is more convenient to derive analytic
formulas for the noncentrality parameters than for the
powers of the tests.

We adopt a two-step procedure for deriving the non-
centrality parameter of a likelihood-ratio test under an
assumed “true model.” The first step is to obtain the
asymptotic values of the maximum-likelihood estimates
of the parameters under both the null and the alternative
hypotheses. The second step is to take the expectations
of the log-likelihoods under the null and alternative hy-
potheses, evaluated at their respective asymptotic pa-
rameter estimates. The noncentrality parameter is then
given by twice the difference between these expected
log-likelihoods.

In our derivations, we denote the true values of the
variance components due to the QTL additive effects,

QTL dominance deviations, residual shared effects, and
residual nonshared effects as VA, VD, VS, and VN, re-
spectively. These are to be distinguished from parameter
estimates, which may be biased when the model is mis-
specified. For notational convenience, we assume that
the quantitative trait has unit variance, so that VA, VD,
VS, and VN represent both the variances and the pro-
portions of variance.

The Noncentrality Parameter of the QTL Linkage Test

The linkage test proposed by Fulker et al. (1999) is twice
the difference in log-likelihood between a model in
which is free and a model in which is fixed at 0.2 2j jA A

If these two log-likelihoods are denoted as “ln L1” and
“ln L0,” respectively, then the test statistic 2(ln L 21

is asymptotically a 50:50 mixture of 0 and ,2ln L ) x0 1

under the null hypothesis of no linkage. If we include
, then the distribution of the test statistic under the2jD

null hypothesis will be a mixture of 0, , and .2 2x x1 2

Under the null hypothesis, the asymptotic parameter
estimates are

[ ]m = mi

and

V 1 V 1 V 1 V if i = jN S A D
[ ]S = ,N ij 1 1

V 1 V 1 V if i ( j{ S A D2 4

whereas, under the alternative hypothesis of linkage, the
asymptotic parameter estimates are

[ ]m = mi

V 1 V 1 V 1 V if i = jN S A D[ ]S = .L ij { ˆˆV 1 p V 1 z V if i ( jS ij A ij D

The expectations of twice the log-likelihood under the
null and alternative hypotheses, for a sibship of size s,
are therefore

′ 21F F( ) ( ) ( ) ( )E 2 ln L =2E ln S 2E y 2 m S y 2 mN N N

F F=2ln S 2sN

and

′ 21F F( ) ( ) ( ) ( )E 2 ln L =2E ln S 2E y 2 m S y 2 mL L N

M

F F=2 p ln S 2s ,O i i
i=1
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where the summation is over all M possible marker-
genotype configurations, with pi and Si being, respec-
tively, the probability and the covariance matrix of the
ith marker-genotype configuration.

In the simple case of sib pairs with complete linkage
information, each pair can be unambiguously assigned
a covariance matrix, depending on whether the pro-
portion of alleles IBD is 0, , or 1. These covariance1

2

matrices have diagonal elements 1 because the trait has
been standardized to have unit variance, and they differ
only in their off-diagonal elements (i.e., sib-pair cor-
relations), which are ,[S ] = r = V [S ] = r =p=0 12 0 S p=0.5 12 1

, and . In a random1V 1 V [S ] = r = V 1 V 1 VS A p=1 12 2 S A D2

sample of sib pairs, these covariance matrices are ex-
pected to occur in the proportions : : , so that the1 1 1

4 2 4

expected twice log-likelihood evaluated under the al-
ternative hypothesis is

1
F FE(2 ln L ) = 2 ln SL p=04

1 1
F F F F2 ln S 2 ln S 2sp=0.5 p=12 4

1 12 2( ) ( )= 2 ln 1 2 r 2 ln 1 2 r0 14 2

1 2( )2 ln 1 2 r 2s .24

Similarly, the expected twice log-likelihood evaluated
under the null hypothesis is ,E (2 ln L ) = 2 ln FS F 2 sN N

where the off-diagonal elements in the covariance ma-
trix are equal to the average sib-pair correlation—
namely, .1 1[S ] = r = V 1 V 1 VN 12 s S A D2 4

The noncentrality parameter, per sib pair, for linkage
is therefore

( )l = E(2 ln L ) 2 E 2 ln LL L N

1 12 2( ) ( )=2 ln 1 2 r 2 ln 1 2 r2 14 2

1 2 2( ) ( )2 ln 1 2 r 1ln 1 2 r .0 s4

When the approximation is2ln (1 2 x) ≈ 2x 2 x 2Z
used, the noncentrality parameter, per sib pair, for the
linkage test, is given by

1 3 12 2l ≈ V 1 V 1 VVL A D A D8 16 4

7 63 454 4 2 21 V 1 V 1 V VA D A D64 512 64

7 313 31 V V 1 VVA D A D16 64

3 15 9 213 3 2 21V V 1 V 1 V V 1 VV[ ]S A D A D A D8 32 8 8

3 9 32 2 21V V 1 V 1 VV .[ ]S A D A D8 16 4

This expression shows that the noncentrality parameter
of the linkage test for sib pairs is to a first-order ap-
proximation proportional to the squares and products
of the additive and dominance QTL components of var-
iance. It also shows that the power to detect a given
QTL effect increases with increasing proportion of re-
sidual shared variance,VS.

In the more general case of a sibship of size s, the
noncentrality parameter is still given by l =L

. SinceE(2 ln L ) 2 E (2 ln L )= 2E (ln FS F) 1 ln FS FL N L N

the trait is standardized to have unit variance, both
covariance matrices have diagonal elements equal to 1
and have off-diagonal elements equal to the correlations
between pairs of siblings (which, under the alternative
hypothesis, are conditional on the number of alleles IBD
between the pairs). To derive an approximation for the
determinant of such a covariance matrix, we note that
the determinant of any matrix, say A, can be written
as , where the sum is over allNFAF = S(21) a a ...a1i 2i si1 2 s

possible permutations i1, i2,),is and where N is the total
number of inversions, of adjacent pairs of indices, nec-
essary to reduce the given permutation i1, i2,),is to the
standard order 1, 2,),s. (An inversion is required when-
ever, in the given permutation, a larger index precedes
a smaller one). Note that each product contains exactly
one element from each row and each column. For the
covariance matrix S, each product contributing to its
determinant will be composed of factors that are a mix-
ture of diagonal elements (which are equal to 1) and
off-diagonal elements (i.e., correlations). The largest of
such products consists only of diagonal elements, and,
because , this product is equal to 1. It is impossibleN = 0
to have a product containing only 1 off-diagonal ele-
ment, and so the second-largest products will tend to
be those containing diagonal elements and 2 off-s 2 2
diagonal elements. Let the two missing diagonal ele-
ments in such a product be indexed by j and k; then
the product is equal to the square of the correlation
between sib j and sib k (i.e., ). There are2r s(s 2 1)/2jk

such products, one for each possible sib pair. Each of
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Table 1

Conditional IBD Distribution at QTL,
Given IBD at Candidate Locus

pM

CONDITIONAL IBD
DISTRIBUTION AT QTL, FOR pQ =

0 1/2 1

0 w2 2w(1 2 w) 2(1 2 w)
1/2 w(1 2 w) 1 2 2w(1 2 w) w(1 2 w)
1 2(1 2 w) 2w(1 2 w) w2

NOTE.—pM = proportion of alleles IBD at
candidate locus; and pQ = proportion of al-
leles IBD at QTL; .2w = v 1 (1 2 v)

these will make a negative contribution to the deter-
minant, because N is an odd number in all these cases.
Thus we have the approximation ln FSF ≈ ln (1 2

, where the summation is taken over all pos-2 2Sr ) ≈ 2Srjk jk

sible (j, k) pairs, . When this approximation is ap-j ! k
plied to the covariance matrix under the null hypothesis,
we obtain . Under the alternative2ln FS F ≈ 2S[E(r )]N jk

hypothesis, we obtain . Hence the2E (ln FS F) ≈ 2SE(r )L jk

noncentrality parameter is approximately

2 2( ) ( )l ≈ E r 2 E r[ ]{ }OL jk jk

s(s 2 1)
( )= Var rjk2

s(s 2 1)
ˆˆ( )= Var p V 1 z V 1 Vjk A jk D S2

s(s 2 1) 2 2ˆˆ= [Var (p )V 1 Var (z )Vjk A jk D2

ˆˆ12 Cov (p ,z )VV ] .jk jk A D

This shows that the noncentrality parameter for linkage
is approximately proportional to the number of possible
pairs in a sibship. It also suggests the use of asˆVar (p)
a measure of the marker informativeness for linkage
analysis. With complete marker information, ,ˆVar (p)

, and approach , , and , respec-1 3 1ˆ ˆˆVar (z) Cov (p,z) 8 16 8

tively, so that the approximate expression of the non-
centrality parameter simplifies to

s(s 2 1) 1 3 12 2l ≈ V 1 V 1 VV .L A D A D( )2 8 16 4

It is possible to derive a more accurate approximation,
by involving higher-order terms; however, the approx-
imation is meant only as an aid for appreciating how
power is affected by various factors and for obtaining
very rough estimates of power. For precise numerical
work we recommend exact evaluation of the logarithms
of the determinants.

Power Attenuation Due to Incomplete Linkage

We now examine a situation in which linkage analysis
is suboptimal and in which the extent of loss of infor-
mation can be quantified. This situation occurs when
analysis is performed at a candidate locus that is not the
QTL itself but is linked to the QTL. The IBD distribution
for a sib pair at the QTL, conditional on the IBD dis-
tribution at a candidate locus, is a function of the re-
combination fraction between the two loci, which is de-
noted as “v.” This conditional distribution was given by
Haseman and Elston (1972), with being2 2v 1 (1 2 v)

denoted as “w” for convenience (table 1). The condi-
tional sib-pair correlations in trait values, given the IBD
status at the candidate locus, can be derived from this
conditional distribution, as

2c = w V 1 2w(1 2 w)(V 1 V 2)Z0 s S A

21(1 2 w) (V 1 V 1 V )S A D

2 2= V 1 2v(1 2 v)V 1 4v (1 2 v) V ,s A D

[ ]c = w(1 2 w)V 1 1 2 2w(1 2 w) (V 1 V 2)Z1 s S A

1w(1 2 w)(V 1 V 1 V )S A D

( ) ( )= V 1 V 2 1 2v 1 2 v 1 2 2v 1 2 v V ,[ ]ZS A D

2c = (1 2 w) V 1 2w(1 2 w)(V 1 V 2)Z2 s S A

21w (V 1 V 1 V )S A D

2( ) ( )= V 1 1 2 2v 1 2 v V 1 1 2 2v 1 2 v V .[ ] [ ]S A D

The noncentrality parameter, per sib pair, of the linkage
test at recombination fraction v from the QTL is then
given by

1 12 2( ) ( )l = 2 ln 1 2 c 2 ln 1 2 cL 0 14 2

1 2 2( ) ( )2 ln 1 2 c 1ln 1 2 r .2 s4

For small values of VA, VD, and VS, a first-order ap-
proximation of the noncentrality parameter is

4 2 4 4 2( ) ( ) ( )1 2 2v V 1 2 2v [2 1 1 2 2v ]VA D

l ≈ 1L 8 16
4( )1 2 2v VVA D

1 .
4
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Table 2

Possible Configurations of Sib-Pair IBD Estimates, When
Parental Genotypes Are Available

Configuration
Parental

Mating Type ẑ p̂ Probability

1 Hom # Hom 1/4 1/2 2(1 2 H)
2 Hom # Het 0 1/4 H(1 2 H)
3 Hom # Het 1/2 3/4 H(1 2 H)
4 Het # Het 0 1/2 2H /2
5 Het # Het 0 0 2(H 2 C)/4
6 Het # Het 1 1 2(H 2 C)/4
7 Het # Het 1/2 1/2 C/2

NOTE.— Hom = homozygous; Het = heterozygous; =ẑ
estimated probability of sharing two alleles IBD; = esti-p̂

mated proportion of alleles IBD; H = probability of hetero-
zygosity; and C = half the probability that two parents have
the same heterozygous genotype. Probabilities were calcu-
lated under the assumption of random mating.

Note that, if the QTL is additive, then the attenuation
in the noncentrality parameter is by a factor of (1 2

, which is the square of the correlation between the42v)
proportions of alleles IBD at two loci separated by re-
combination fraction v.

Power Attenuation Due to Incomplete Marker
Information

Another situation in which attenuation of power can be
quantified is that of incomplete marker informativeness,
when parental genotype data are available. In this case,
Haseman and Elston (1972) have shown that only seven
different sets of IBD estimates can arise (table 2). Each
configuration implies a covariance matrix (as specified
by and ). Under random mating, the probabilities ofˆ ˆz p

these configurations are determined by marker-allele fre-
quencies m1, m2,),mk, through the probability that a
parent has a heterozygous genotype (H) and through
half the probability that two parents have the same het-
erozygous genotype (C). andk 2H = 1 2 S m C =i=1 i

. If the sib-pair correlation and the prob-k k 2 2S S 2m mi=1 j=i11 i j

ability of configuration i, as specified in table 2, are
denoted as “ri”and “Pi,” respectively, then the noncen-
trality parameter of the likelihood-ratio statistic for link-
age is . By use of the7 2 2l =2S Pln (1 2 r ) 1 ln (1 2 r )L i=1 i i s

first-order approximation , it can beln (1 2 x) ≈ 2x
shown that, for small values of VA, VD, and VS, the
noncentrality parameter per sib pair simplifies to

2 2 2( ) ( )H 2 C V H 1 2H 2 2C VA D

l ≈ 1L 8 16

( )H 2 C VVA D

1 .
4

The quantity is the “polymorphism informationH 2 C
content” of the marker locus (Botstein et al. 1980). The
noncentrality parameter for the linkage test is therefore
attenuated by approximately the polymorphism infor-
mation content of the marker.

The Power of the QTL Association Test

We consider three tests of association: (1) an overall test
based on individual differences, (2) a test based on dif-
ferences between sibships means, and (3) a test based
on differences within sibship. The first test involves es-
timation of all the association parameters ab, db, aw, and
dw; the second test involves estimation of the between-
sibships parameters ab and db; and the third test involves
estimation of the within-sibship parameters aw and dw.
For all three tests, the null hypothesis is obtained by
fixing all the parameters—ab, db, aw, and dw—to 0. In a

pure test for association, the parameters and are2 2j jA D

fixed to 0 under both the null and the alternative
hypotheses.

Under the null hypothesis of no association, all QTL
effects, both between and within sibships, are omitted
from the mean vector and are therefore included in the
covariance matrix, so that the asymptotic parameter
estimates for a sibship of size s are

[ ]m = m0 i

and

V 1 V 1 V 1 V if i = jN S A D

[ ]S = .BW ij

1 1{V 1 V 1 V if i ( jS A D2 4

Under the alternative hypothesis of both between-sib-
ships and within-sibship associations, all QTL effects
are modeled in the mean vector, so that the asymptotic
parameter estimates for a sibship of size s are

[ ]m = m 1 a A 1 a A 1 d D 1 d DBW b bi w wi b bi w wii

and

V 1 V if i = jN S[ ]S = .0 ij {V if i ( jS

Under the alternative hypothesis of between-sibships as-
sociation, QTL effects on sibship means are modeled in
the mean vector, while QTL effects on within-sibship
differences are included in the covariance matrix. The
asymptotic parameter estimates for a sibship of size s
are
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[ ]m = m 1 a A 1 d DB b bi b bii

and

s 2 1 3s 2 3
V 1 V 1 V 1 V if i = jN S A D2s 4s

[ ]S = .W ij
21 23{V 1 V 1 V if i ( jS A D2s 4s

Finally, under the alternative hypothesis of within-sib-
ship association, QTL effects on within-sibship differ-
ences are modeled in the mean vector, whereas QTL
effects on sibship means are included in the covariance
matrix. The asymptotic parameter estimates for a sib-
ship of size s are

[ ]m = m 1 a A 1 d DW w wi w wii

and

s 1 1 s 1 3
V 1 V 1 V 1 V if i = jN S A D2s 4s

[ ]S = .B ij s 1 1 s 1 3{V 1 V 1 V if i ( jS A D2s 4s

Derivations of the asymptotic estimates of the covari-
ance matrices are given in Appendix A. The expecta-
tions of twice the log-likelihood under these four hy-
potheses, for a sibship of size s, are therefore

′ 21F F( ) ( ) ( )E 2 ln L =2ln S 2E y 2 m S y 2 m0 BW 0 BW 0

F F=2ln S 2s ,BW

′ 21F F( ) ( ) ( )E 2 ln L =2ln S 2E y 2 m S y 2 mBW 0 BW 0 BW

F F=2ln S 2s ,0

′ 21F F( ) ( ) ( )E 2 ln L =2ln S 2E y 2 m S y 2 mB W B W B

F F=2ln S 2s ,W

′ 21F F( ) ( ) ( )E 2 ln L =2ln S 2E y 2 m S y 2 mW B W B W

F F=2ln S 2s .B

The noncentrality parameters of the overall, between-
sibships, and within-sibship tests of association are
therefore

l = E(2 ln L ) 2 E(2 ln L )BW BW 0

F F F F= 2 ln S 1ln S ,0 BW

l = E(2 ln L ) 2 E(2 ln L )B B 0

F F F F= 2 ln S 1ln S ,W BW

and

l = E(2 ln L ) 2 E(2 ln L )W W 0

F F F F= 2 ln S 1ln S .B BW

All the covariance matrices have equal diagonal ele-
ments and equal off-diagonal elements. It can be shown
(see Appendix B) that the determinant of a matrix A
having dimension s, diagonal elements a, and off-di-
agonal elements b is equal to s21FAF = (a 2 b) [a 1 (s 2

. Hence,1) b]

s211 3
F FS = V 1 V 1 VBW N A D( )2 4

s 1 1 s 1 3
# V 1 sV 1 V 1 V ,N S A D( )2 4

s 1 1 s 1 3s21F FS =V V 1 sV 1 V 1 V ,B N N S A D[ ]2 4
s211 3

F F ( )S = V 1 V 1 V V 1 sV ,W N A D N S( )2 4
s21F F ( )S =V V 1 sV .0 N N S

The noncentrality parameters of the overall, between-
sibships, and within-sibship tests of association are
therefore

F F F Fl = 2 ln S 1ln SBW 0 BW

s21

1 3
= ln V 1 V 1 VN A D( )2 4

s 1 1 s 1 3
1ln V 1 sV 1 V 1 VN S A D( )2 4

s212ln(V ) 2 ln(V 1 sV ) ,N N S

F F F Fl = 2 ln S 1ln SB W BW

s 1 1 s 1 3
= ln V 1 sV 1 V 1 VN S A D( )2 4

2ln(V 1 sV ) ,N S
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Table 3

Haplotype Frequencies at QTL (A) and Marker (M)

GENOTYPE FREQUENCY AT

QTL AND MARKER, FOR

TOTALM1 M2

A1 pm 1 D1 pm 2 D2 p

A2 qm 2 D1 qm 1 D1 d

Total m1 m2 1

NOTE.—A1 and A2 = alleles at QTL; M1 and M2 =
alleles at marker locus; p and q = allele frequencies
at QTL; m1 and m2 = allele frequencies at marker
locus; and D = linkage-disequilibrium parameter

F F F Fl = 2 ln S 1ln SW B BW

s21

1 3 s21= ln V 1 V 1 V 2 ln(V ) .N A D N( )2 4

As expected, the noncentrality parameter of the overall
test is equal to the sum of the noncentrality parameters
of the between-sibships and within-sibship tests. For
small values of VS, VA, and VD, the expressions of the
latter two noncentrality parameters can be approxi-
mated by

( ) ( )s 1 1 /2 V 1 s 1 3 /4 V[ ] [ ]A D

l = ln 1 1{ }B V 1 sVN S

( ) ( )s 1 1 /2 V 1 s 1 3 /4 V[ ] [ ]A D

≈
V 1 sVN S

and

( ) ( )1/2 V 1 3/4 VA D

l = (s 2 1) ln 1 1W [ ]VN

( ) ( )1/2 V 1 3/4 VA D

( )≈ s 2 1 .[ ]VN

In the case of sib pairs, these are simply

( ) ( )3/2 V 1 5/4 VA D

l ≈B V 1 2VN S

and

( ) ( )1/2 V 1 3/4 VA D

l ≈ .W VN

These expressions show that, for sib pairs, the between-
sibships test can be up to three times more informative
than the within-sibship test. However, whereas the non-
centrality parameter of the within-sibship test increases
in proportion to ( ), the increase, with increasings 2 1
sibship size, in the noncentrality parameter of the be-
tween-sibships test is more gradual. It should be noted
also that the noncentrality parameters for the associa-
tion tests are directly proportional to VA and VD and
that a larger VS (and hence a smaller VN) will increase
the power of the within-sibship test, for fixed values of
VA and VD.

Power Attenuation Due to Incomplete Linkage
Disequilibrium

The noncentrality parameters for the tests of association
are directly related to the variance components due to
the QTL. If association analysis is performed on a
marker (or candidate) locus that is in partial linkage
disequilibrium with the QTL, then the noncentrality pa-
rameters will be determined by the “apparent variance
components” at the marker.

We adopt the notation of Falconer and Mackay
(1996) and label the QTL alleles as “A1” and “A2” and
label their population frequencies as “p” and “q.” The
effects of the three genotypes A1A1, A1A2, and A2A2

on the quantitative trait are arbitrarily assigned the val-
ues a, d, and 2a, respectively. The additive and domi-
nance variance components contributed by the QTL to
the trait are then and2V = 2pq[1 2 d (p 2 q)] V =A D

.2 2 24p q d
Suppose that a diallelic marker is tightly linked to the

QTL. We denote the marker alleles as “M1” and “M2”
and denote their frequencies as “m1”and “m2.” The
marker has no direct effect on the trait but is in linkage
disequilibrium with the QTL; the magnitude of this link-
age disequilibrium is measured by the quantity D, de-
fined as the difference between the frequency of the
haplotype A1M1 (denoted as “h11”) and the product of
frequencies of alleles A1 and M1. The haplotype fre-
quencies of the two loci are determined by D and the
allele frequencies, as shown in table 3.

For convenience, haplotype frequencies are denoted
as “h11,” “h12,” “h21,” and “h22.” There are 16 possible
combinations of haplotypes in an individual, which can
be reduced to 9 possible combinations of genotypes
when the parental origin of a haplotype is unimportant;
under random mating, the frequencies of these 9 pos-
sible combinations of genotypes are shown in table 4.

The “apparent effect” of a marker genotype (M1M1,
M1M2, or M2M2) is an average of the effects of the three
possible QTL genotypes (A1A1, A1A2, and A2A2),
weighted by the conditional probabilities of the QTL



1624 Am. J. Hum. Genet. 66:1616–1630, 2000

Table 4

Genotype Frequencies at QTL (A) and
Marker (M), Expressed in Terms of
Haplotype Frequencies, under Random
Mating hij: Frequency of Haplotype AiMj

GENOTYPE FREQUENCY

AT QTL AND MARKER, FOR

M1M1 M1M2 M2M2

A1A1
2h11 2h h11 12

2h12

A1A2 2h h11 21 2h h 1 2h h11 22 12 21 2h h12 22

A2A2
2h21 2h h21 22

2h22

genotypes, given the marker genotype. Thus, the ap-
parent effects of M1M1, M1M2, or M2M2, denoted, re-
spectively, as “m11,” “m12,” and “m22,” can be expressed,
respectively, as

2 2h 2h h h11 11 21 21
m = a 1 d 2 a ,11 ( ) ( ) ( )2 2 2m m m1 1 1

2h h 2h h 1 2h h11 12 11 22 12 21
m = a 1 d12 ( ) ( )2m m 2m m1 2 1 2

2h h21 222a ,( )2m m1 2

and

2 2h 2h h h12 12 22 22
m = a 1 d 2 a .22 ( ) ( ) ( )2 2 2m m m2 2 2

The “apparent effect sizes” of the marker alleles can be
expressed in terms of these effects, as follows: d =M

and . Substitut-m 2[(m 1 m )/2] a = [(m 2 m )/2]12 11 22 M 11 22

ing the expressions for m11, m12, and m22 into these for-
mulas, we obtain and2d = dD a = aD 1d[(m 2M M M M 1

, where DM is an abbreviation for2m )D 2(p 2 q)D ]2 M M

the ratio . Note that, if the diallelic markerD/(m m )1 2

locus is the QTL itself, then , , andp = m q = m D =1 2

, so that the product m1m2 is simply2m 2 m = m m1 1 1 2

the maximum possible value of D that can be attained
by the marker. Consequently, the quantity DM is the
ratio between the actual magnitude of linkage disequi-
librium and the maximum magnitude of linkage dise-
quilibrium possible for the marker.

The “apparent variance components” at the marker
locus are therefore

2 2[ ]V = 2m m D a 2 d(p 2 q)AM 1 2 M

and

2 2 2 4V = 4m m d D .DM 1 2 M

These expressions give rise to the following simple ratios
of variance components: and2V /V = D /pqm mAM A 1 2

.2 2V /V = (D /pqm m )DM D 1 2

We denote the ratio as “R2.” This quan-2D /(pqm m )1 2

tity is the x2 statistic of the table of population2 # 2
haplotype frequencies at the QTL and the marker locus
(see table 3). Moreover, if each QTL and marker allele
is assigned a numerical value, then R is the correlation
between the QTL and the marker alleles. The quantity
R2 is a standard measure of association in tables2 # 2
(Bishop et al. 1975) and of linkage disequilibrium be-
tween diallelic loci (Crow and Kimura 1970).

The derivation of the ratios of variances between a
diallelic QTL and a multiallelic marker can be simplified
by considering the additive and dominance components
separately and by a suitable choice of scale and location
parameters. Consider a marker locus containing the al-
leles M1, M2,),Mk occurring at frequencies m1,
m2,),mk. Denote the frequency of the haplotype AiMj

as “hij.”
For the additive component, we assign the arbitrary

effects of 1 and 0 to alleles A1 and A2, respectively, giving
a mean of p and a variance of pq. Allele Mj has apparent
effect 1 with probability and has effect 0 withh /m1j j

probability . The average apparent effect of alleleh /m2j j

Mj is therefore . The ratio of the apparent additiveh /m1j j

variance at the marker locus to the additive variance at
the QTL is thus

k
2O m (h /m 2 p)j 1j jV j=1AM =

V pqA

k 2(h 2 m p)1j j= O
m pqj=1 j

k 2 2(h 2 m p) (h 2 m q)1j j 2j j= 1 .O [ ]m p m qj=1 j j

This quantity is the x2 statistic of the table of2 # k
population haplotype frequencies. It is therefore a direct
generalization of R2 from tables to tables.2 # 2 2 # k
This quantity, which we refer to as “F2,” has been used
as a measure of the “kinship” between two loci (Morton
and Wu 1988). The ratio of the apparent additive var-
iance at the marker locus to the additive variance at a
diallelic QTL is F2.

To derive the ratio of apparent dominance variance
at the marker locus to the dominance variance at the
QTL, we assign the values of q, 0, and p to genotypes
A1A1, A1A2, and A2A2, respectively, so that the QTL
effects have mean pq, additive variance 0, and domi-
nance variance p2q2. The apparent effect of marker ge-
notype MiMj is then for and is2 2 2(h q 1 h p) /m j = i1i 2i i

for . The ratio of the(2h h q 1 2h h p) /2m m j ( i1i 1j 2i 2j i j
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Table 5

Average x2 Statistics Obtained from 100 Simulated Samples of
1,000 Sib Pairs, Compared with Theoretical Expectations

ANALYSIS

AVERAGE x2 STATISTIC, FOR

V = 0S V = .4S

Simulation Theory Simulation Theory

Linkage 6.02 5.68 13.02 11.82
Association:

Between pairs:
D = .25 313.82 319.45 221.79 224.14
D = .20 190.28 192.82 136.99 137.97
D = .10 45.96 45.62 34.12 36.52
D = .05 12.87 11.97 9.95 9.03
D = .025 4.29 3.73 3.62 3.00

Within pairs:
D = .25 115.46 118.78 201.42 224.14
D = .20 70.31 74.77 122.32 137.97
D = .10 17.43 18.95 29.30 36.52
D = .05 5.16 5.45 8.07 9.03
D = .025 2.18 2.11 2.95 3.00

NOTE.— ; VS = residual shared variance; and D = linkage-V = .2A

disequilibrium parameter. Both QTL and marker loci are diallelic,
with equal allele frequencies.

apparent dominance variance at the marker locus to the
dominance variance at the QTL is therefore

2 2
2 2k k kh q1h p 2h h q12h h p1i 2i 1i 1j 2i 2j2

2O m 2 pq 1 O O 2m m 2 pqi i jm 2m m( ) ( )i i ji=1 i=1 j=i11VDM =
2 2V p qD

k k k2 2 2 2 2(h q 1 h p 2 m pq) 2(h h q 1 h h p 2 m m pq)1i 2i i 1i 1j 2i 2j i j= 1O OO2 2 2 2 2m p q m m p qi=1 i=1 j=i11i i j

k k k4 2 2(h 2 m p) (h 2 m p) (h 2 m p)1i i 1i i 1j j= 1O OO2 2 2 2 2m p q m m p qi=1 i=1 j=i11i i j

2

k 2(h 2 m p)1i i= .O[ ]m pqi=1 i

Under the above-noted definition of F2, this ratio is
equal to . Hence the additive variance is attenuated2 2(F )
by a factor of F2, and the dominance variance is atten-
uated by a factor of F4.

If the model does not include linkage ( ),2 2j = j = 0A D

then one-half of the nonattenuated part of the additive
variance is shared between siblings, and one-quarter of
the nonattenuated part of the dominance variance is
shared between siblings. The apparent variance com-
ponents at the marker locus are therefore

2V = F V ,AM A

4V = F V ,DM D

2 4( ) ( )1 2 F V 1 2 F VA D

V = V 1 1 ,SM S 2 4
2 4( ) ( )1 2 F V 3 1 2 F VA D

V = V 1 1 .NM N 2 4

The noncentrality parameter for a sibship of size s,
for the within-pairs test for association, is then
approximately

(s 2 1)U(1/2)V 1 (3/4)V IAM DM

l ≈ .W VNM

When VA and VD are close to 0 and VN is close to 1,
the noncentrality parameter is approximately

1 32 4l ≈ (s 2 1) F V 1 F V .W A D( )2 4

A similar approximation can be obtained for the non-
centrality parameter of the between-sibships test of
association.

Simulations

We checked the theoretically derived noncentrality pa-
rameters against the average x2-test statistics obtained
by simulation studies reported in the article, by Fulker
et al. (1999), that originally proposed the between-/
within-sibship partition. The average x2 statistics ob-
tained by simulation are given in tables 3 and 5 of the
Fulker et al. (1999) article. Each average x2 statistic was
calculated from 100 replicate samples of 1,000 sib pairs.
The QTL was assumed to be additive with . TheV = .2A

residual shared variance, VS, was set at either 0 or .4.
Linkage disequilibrium, as measured by D, was varied
from .25 to .025. Since the QTL and the candidate locus
were assumed to be diallelic with equal allele frequen-
cies, D and R2 are related by .2 2R = (4D)

The theoretical expectation of a x2-test statistic is
equal to the sum of its noncentrality parameter and its
df. All three tests considered (i.e., linkage, between-pairs
association, and within-pair association) have 1 df (be-
cause Fulker et al. [1999] modeled only additive effects),
but the test of linkage is one tailed. The theoretical
expectations of the x2 statistics are therefore the non-
centrality parameters plus half, for the linkage test, and
the noncentrality parameter plus 1, for the association
tests. The noncentrality parameters are calculated by
use of exact formulas involving the logarithms of de-
terminants, rather than by use of first-order approxi-
mations (because these latter are inaccurate for values
of VA, VD, or VS that are 1.1). The observed and the-
oretical expectations are in fairly close agreement, for
all situations examined (table 5).
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Table 6

Sample Sizes (No. of Sib Pairs) Required for 80% Power to
Detect Linkage and Association, at Critical LOD Scores of 3 for
linkage and of 6 for Association, for a Range of VA,
Recombination Fraction v, and Linkage Disequilibrium R2

ANALYSIS

SAMPLE SIZE REQUIRED, FOR VA =

.01 .05 .10 .15

Linkage:
v = .20 ) 407,843 97,653 41,270
v = .10 ) 129,193 30,815 13,033
v = .05 ) 80,620 19,241 8,128
v = .0 ) 52,790 12,614 5,322

Within-pairs association:
2R = .10 55,440 10,770 5,190 2,329
2R = .25 22,156 4,297 2,064 1,321
2R = .50 11,068 2,139 1,023 651
2R = 1.0 5,524 1,060 502 316

NOTE.—Dominance QTL variance (VD) is assumed to be 0, and
residual shared variance (VS) is assumed to be .25.

In the assessment of the significance of the differences
between the observed and theoretical expectations, it is
useful to recall that the variance of a x2 random variable
is equal to four times its noncentrality parameter plus
twice its df (Kendall and Stuart 1979). These theoretical
variances are in good agreement with the empirical var-
iances of the x2 statistics of the simulated data. The
standard error of the average of the x2 statistics of 100
replicates is one-tenth the square root of this theoretical
sampling variance. The simulation-derived average x2

statistic should therefore be within plus or minus one-
fifth of the square root of four times the theoretical
noncentrality parameter. Inspection of table 5 shows
that, only for the within-pairs association test in the
presence of substantial residual sib-pair correlation, do
the simulation-based x2 statistics appear to be signifi-
cantly smaller than their theoretical predicted values.
One possible explanation for these discrepancies is that,
under these conditions, the within-pairs association pa-
rameter is somewhat underestimated even with a sample
size of 1,000 sib pairs.

Sample-Size Considerations

Once the theoretical noncentrality parameter of a test
has been obtained, it is easy to calculate the required
sample size for any required level of significance and
power. For linkage, the level of significance required is
traditionally set at a LOD score of 3, which is equivalent
to a x2 statistic of 13.8 and to a fixed-sample one-tailed
significance level of .0001. This LOD-score criterion was
initially proposed by Morton (1955) and can be justified,
very roughly, as being the common logarithm, of the
likelihood ratio (1,000), that is necessary to convert the
odds from 50:1 against linkage to 20:1 in favor of link-
age (see Ott 1991, p. 66). In order to adopt a similar
argument for association, it is necessary to set a value
for the prior odds for association, which will depend on
the extent of linkage disequilibrium in the population.
If we assume that linkage disequilibrium extends over a
distance of 30 kb to either side of a QTL (see the Dis-
cussion section, below), then the prior odds for associ-
ation would be 1:50,000, and a likelihood ratio of
1,000,000 would be required to produce a posterior
odds of 20:1. This corresponds to a LOD score of 6, a
x2 statistic of 27.6, and a fixed-sample significance level
of ∼.0000001.

If 13.8 and 27.6 are adopted as the critical x2 statistics
for linkage and association, respectively, then the cor-
responding noncentrality parameters required for 80%
power are 20.8 and 37.2, respectively. Under any given
set of assumptions, the required number of sib pairs can
be obtained by dividing the required noncentrality pa-
rameter (i.e., 20.8 for linkage and 37.2 for association)
by the theoretical noncentrality parameter per sib pair.

Table 6 shows the required sample sizes for 80%
power to detect linkage and association at the critical
LOD scores of 3 for linkage and 6 for association, for
a range of additive QTL variance (VA), v, and linkage
disequilibrium (R2). Dominance QTL variance (VD) is
assumed to be 0, and residual shared variance (VS) is
assumed to be 0.25. The required sample sizes indicate
that detection of a QTL by linkage is only feasible when
the proportion of phenotypic variance accounted for by
the QTL is 10% or more. At this level of QTL variance,
approximately 20,000 sib-pairs are required for linkage
analysis. In contrast, association analysis can feasibly
detect a QTL accounting for as little as 1% of the phe-
notypic variance, provided that the degree of linkage
disequilibrium between QTL and marker is strong
( ).2R 1 .5

Discussion

We have derived intuitively appealing results concerning
the power of QTL linkage and association analysis under
a variance-components model for large samples of un-
selected sibships. These results are particularly simple
when the effects at the QTL are small and additive. In
this case, the expected noncentrality parameter, per sib-
ship, for the detection of linkage is very approximately
equal to the number of possible sib pairs in a sibship,
times the product of the variance of and the squarep̂

of the QTL heritability. This simple result shows clearly
how the power of linkage analysis declines rapidly with
decreasing QTL heritability.

The same result also suggests the use of the variance
of as a measure of the degree of saturation of linkagep̂

information at a locus in a sample of sib pairs. The
variance of is determined by the positions as well asp̂
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by the polymorphism information contents of the
marker loci; and it declines with increasing recombi-
nation fraction v from a marker locus, according to the
formula . This slow rate of decline means that4(1 2 2v)
only several hundred highly polymorphic markers are
enough to almost saturate the entire genome with link-
age information.

For an additive QTL, the noncentrality parameter, per
sibship, for the robust within-pairs test of association
is very approximately equal to the number of siblings
minus one times half the QTL variance. The noncen-
trality parameter therefore decreases approximately lin-
early with decreasing QTL heritability. Since the non-
centrality parameter is directly related to QTL
heritability in the case of association but to the square
of the QTL heritability in the case of linkage, it is clear
that, with decreasing QTL heritability, association will
become progressively more powerful than linkage.

Both the linkage and the within-sibship test of as-
sociation have increasing power with increasing residual
shared variance and correspondingly decreasing resid-
ual nonshared variance. Any study-design feature that
may decrease the residual nonshared variance and in-
crease the residual shared variance, such as the use of
repeated or multivariate measures or the selection of
DZ twins, will potentially have a beneficial effect on
the statistical power of the tests.

The main disadvantage of using association for the
detection of a QTL is that power declines rapidly with
a decreasing degree of linkage disequilibrium between
the QTL and the candidate locus. The noncentrality
parameter is reduced by a factor equal to either R2, in
the case of a diallelic candidate locus, or F2, in the case
of a multiallelic candidate locus. The quantity R2 is well
known in the population-genetics literature, as a mea-
sure of linkage disequilibrium (Crow and Kimura
1970). It is related to the standard measure of linkage
disequilibrium, D (the difference between the frequency
of a haplotype and the product of the frequencies of its
constituent alleles), by , where p, q,2 2R = (D /pqm m )1 2

m1, and m2 are the allele frequencies of the two loci.
Although the quantities R2 and D are closely related to
each other, their theoretical properties in populations
have been examined from different perspectives. In an
infinite-population model, the magnitude of D is pro-
portional to , where v and g are, respectively,g(1 2 v)
the recombination fraction between the loci and the
number of generations since the mutational event re-
sponsible for the most recent polymorphism. In con-
trast, the quantity R2 is usually examined in a finite-
population model, in which the balance between genetic
drift and recombination can be shown to lead to the
approximate expectation , where2 21E (R ) ≈ (1 1 4Nv)
N is the size of the population (Hill and Robertson
1968; Ohta and Kimura 1969; Sved 1971). For a pop-

ulation of nonconstant size, the population size N can
be replaced by an effective population size Ne. In reality,
both models are likely to be approximations to the
truth, since linkage disequilibrium is influenced by nu-
merous factors, such as population size and structure,
migration, and selection (for a discussion, see Weiss
1993); nevertheless, the reduction of R2 with increasing
recombination fraction is less rapid in a finite-popula-
tion (i.e., drift) model than in an infinite-population
model. This appears to be in better agreement with em-
pirical data from human populations (Jorde et al. 1994),
for which Ne has been estimated at ∼10,000 (Nei and
Graur 1984; Wills 1990; Harpending 1998; Halushka
et al. 1999).

Under a finite-population model, the likely magnitude
of v necessary for preserving a certain proportion of the
maximum attainable value of the noncentrality param-
eter (the case of complete linkage disequilibrium) is

. Thus, in order to preserve 10%2v = (1/4N )[(1/R ) 2 1]e

of the noncentrality parameter, v should be !.000225
when . This translates to a physical distanceN = 10,000e

of 22.5 kb, on the assumption that recombinations oc-
cur evenly over the genome. This may be the range over
which QTL detection by linkage disequilibrium will
usually be successful.

For comparing the power of QTL linkage and that
of association analyses, we assume that complete in-
formation is available for linkage (which, nowadays,
because of the availability of numerous highly poly-
morphic markers for multipoint analysis, is almost re-
alistic). For an additive QTL, the maximum attainable
noncentrality parameter, per sib pair, for the linkage test
is ∼ . Then, if we adopt the approximation that the2V /8A

noncentrality parameter for the within-pairs association
test is , it is clear that the two tests will have2R V /2A

approximately the same noncentrality parameter when
, which simplifies to . Thus, as-2 2 2V /8 = R V /2 R = V /4A A A

sociation will have a greater noncentrality parameter
than will linkage, if we can get close enough to the QTL
that . Since the expectation of R2 is ∼2R 1 V /4 (1 1A

, this translates to214N v)e

1 1 1 1
v ! 2 ≈ .( )N V 4 NVe A e A

If we assume that , a QTL that accountsN = 10,000e

for 10% of the phenotypic variance will have a critical
recombination fraction of .001 (i.e., ∼100 kb), and a
QTL that accounts for 1% of the phenotypic variance
will have a critical recombination fraction of .01 (i.e.,
∼1Mb). Linkage analysis is an attractive strategy in the
former scenario but would be infeasible in the latter. To
detect QTLs that account for only 1% of the phenotypic
variance, it may be necessary to perform a genome scan
using not linkage but association. If association is usu-
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ally detectable at !20 kb from a QTL, then a genome
scan using association analysis may require 100,000
markers (for an alternative estimate, see Kruglyak
1999); however, further empirical data are required to
resolve this important issue in the design of QTL as-
sociation studies.

For both linkage and association, the noncentrality
parameters are complicated by the inclusion of domi-
nance. Whether the inclusion of a dominance compo-
nent in the model will improve the power of QTL de-
tection depends on whether the magnitude of VD is
sufficient to compensate for the extra df. It is notable,
however, that the contribution of VD to the noncen-
trality parameter of the association test decreases as a
function of R4 (rather than of R2, as in the case of VA).
This suggests that the assumption of additivity may be
reasonably adopted when one is searching for linkage
disequilibrium and that dominance may be introduced
only when the candidate is suspected to be the true QTL
itself.

The considerations noted above apply to diallelic
markers. It has been suggested that association analysis
is more favorable with multiallelic markers (Ott and
Rabinowitz 1997; Chapman et al. 1998); however, al-
though the mean vector of the model can accommodate
the effect of each allele of a multiallelic candidate locus
by a separate parameter, such a procedure increases the
df of the test and, therefore, may reduce power in some
circumstances. It is therefore desirable that alternative
test procedures be developed for association analysis
with either highly polymorphic candidate loci or mul-
tilocus haplotypes.

Our finding that the noncentrality parameter for as-
sociation is attenuated by a factor equal to F2 suggests
that this parameter may be an appealing measure of the
degree of linkage disequilibrium between a QTL and a
multiallelic locus. Although F2 has been used, in pre-
vious studies, as an index of linkage disequilibrium
(Morton and Wu 1988), further studies of its properties
are urgently needed.

Although our results may seem somewhat disturbing,
in showing that very large sample sizes are necessary
for the detection of a QTL that accounts for a small
proportion of the phenotypic variance, there are certain
ways in which power may be improved. A two-step
strategy of genome scanning may be adopted, with use
of a critical level lower than the conventional crite-
rion—a LOD score of 3—for an initial linkage-scan
step, in order to identify promising genomic regions for
further association analysis with very dense marker sets.
The power of both linkage and association will be in-
creased if residual nonshared variance can be reduced
by more-accurate or repeated measurements of the trait.
This naturally extends to the multivariate modeling of
several traits that share a substantial proportion of their

genetic bases (Eaves et al. 1996; Comuzzie et al. 1997;
Martin et al. 1997; Vogler et al. 1997; Allison et al.
1998; Boomsma and Dolan 1998; Todorov et al. 1998).
Efficiency may be gained by the selection of sibships
whose trait values are such that they are likely to con-
tribute the largest amounts to the noncentrality param-
eters of the tests (Eaves and Meyer 1994; Risch and
Zhang 1995, 1996). However, the variance-components
model described here is not directly applicable to either
samples selected for extreme trait values or non-normal
quantitative phenotypes (Dolan and Boomsma 1998;
Allison et al. 1999), and further refinements in statistical
methodology are required for these important scenarios.
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Appendix A

All elements of the covariance matrix for the between-
sibships QTL effects are equal to

s s s sg 1iVar = Var (g ) 1 2 Cov (g ,g )O O OO[ ]i i j( ) 2s si=1 i=1 i=1 j=i11

1 V VA D( ) ( )= s V 1 V 1s s 2 1 1A D ( )[ ]2s 2 4

s 1 1 s 1 3
= V 1 V .A D2s 4s

In the covariance matrix for the within-sibship QTL
effects, any kth diagonal element is given by

s sg gi i( )Var g 2 = Var g 1VarO Ok k( ) ( )s si=1 i=1

s gi22 Cov g ,Ok( )si=1

s 1 1 s 1 3
( )= V 1 V 1 V 1 VA D A D( )2s 4s

V 1 V s 2 1 V VA D A D22 1 1( )[ ]s s 2 4

s 2 1 3s 2 3
= V 1 V .A D2s 4s
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Any off-diagonal element for the (kth,lth) pair is given
by

s sg gi iCov g 2 , g 2O Ok l( ) ( )[ ]s si=1 i=1

s gi( )= Cov g ,g 1Var Ok l ( )si=1

s sg gi i2 Cov g , 2 Cov g ,O Ok l( ) ( )s si=1 i=1

V V s 1 1 s 1 3A D= 1 1 V 1 VA D( ) ( )2 4 2s 4s

V 1 V s 2 1 V VA D A D22 1 1( )[ ]s s 2 4

21 23
= V 1 V .A D2s 4s

Appendix B

Let As be an s-dimensional ( ) symmetric matrixs > 2
with diagonal elements equal to a and with off-diagonal
elements equal to b. Let Bs be identical to As, except for
the first diagonal element, which is b rather than a. The
determinants of As and can be shown (by subtrac-Bs21

tion of column 2 of the matrices from column 1 of the
matrices) to be andFA F = (a 2 b) (FA F 1 FB F)s s21 s21

. Application of these two for-FB F = (a 2 b) FB Fs21 s22

mulas recursively then yields s21FA F = (a 2 b) [a 1 (s 2s

.1)b]
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